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Nondiagonal Seed Universes and a Network of 
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By using the double Ehlers transformations and 7 transformations, new non- 
diagonal seed solutions are obtained. From these seed solutions we obtain a 
network of double gravitational soliton solutions. The double gravitational 
inverse scattering method is used to give some concrete examples of new 
solutions. 

1. INTRODUCTION AND PREPARATION 

In gravitational theory, the inverse scattering method found by 
Belinsky and Zakharov (BZ) (1978, 1979) has been developed into the 
double inverse scattering method by Zhong (1988a, b) and the latter can 
be connected with the double Ernst equation (Zhong, 1985; Ernst, 1968). 
By using the double inverse scattering method, we can easily give gravita- 
tional soliton solutions. However, in the process of using the inverse 
scattering method it is difficult to choose the seed solutions, especially the 
nondiagonal seed solutions. So far, there have been much fewer solutions 
of the double BZ equation used as the seed solutions. Gao and Zhong 
(1992) have discussed how to seek nondiagonal seed solutions. We have 
found some double Backlund transformations by which we can obtain a set 
of seed solutions. Furthermore, we can obtain a network of double soliton 
solutions. 

First we introduce some necessary symbols and terms; let J denote the 
double imaginary unit, i.e., J = i  (i2= _ 1) or J = e  (~2= 1, e #  -k- 1). Let a 
be a real number set, a =  {ao, al . . . . .  an}, and Y,~I  lanl is a covergent 
series; then 

a(J)= ~ anJ 2n (1.1) 
n~0  
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is called a double real number and corresponds to a dual real number pair 
(ac, a.), 

ac=a(J=i)= ~ ( - 1 ) ~ a ,  
n = 0  

aI-i = a(J= ~) = ~ a. 
n = O  

(1.2) 

If a(J) and b(J) are both double real numbers, then 

z(J)=a(J)+J.b(J) (1.3) 

is a double complex number. The double exponential function e ~~ is defined 
by 

e J~ = C(JO) + JS(JO) (1.4) 

where 

S(JO) = (2n + 1)~ (3"0)2, 
n = 0  

C(JO) = ~ (JO) ~" 
r t~O 

(1.5) 

where 0 is a real number; when J = i, S(J) = sin and C(J) = cos; when j = e, 
S(J) = sh and C(J)= ch. The commutation operator o is defined as 

o: J ~ , l ,  f=e ,  g = i  (1.6) 

The line element of an axisymmetric vacuum field (ASVF) can be 
taken as 

ds2=f-l[e~(dp2 +dz2)+p2 d(j2]+ f(dt+~odfb) 2 (1.7) 

where f ,  co, and T are real functions of p and z only, and z is determined 
by f and co. Considering the double complex Ernst equation 

Re d~ V2g(J) = VS'(J). Vg(J)  (1.8) 

where F(J) and f~(J) are double real functions of p and Z, if g(J)  is a 
solution, then we obtain a pair of gravitational dual solutions, 
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f =  F c, ~ f  = T(F.) 
co= VFc(~C), (oh = E~H (1.9) 

where the NK transformations are defined by 

7". F(J) ~ T[F(J)] = pF- '(J) 

v: ~ ( J )  ~ v ~ [ ~ ( J ) ]  = co (1.10) 

co = f pF-2(J)[Oz~(J) . dp - ~p~(J). dz] 

Let M(J) be a 2 • 2 double matrix 

M(J)=rta  ) ~(J) ~2(g)-g2F(J)J (1.11) 

Then equation (1.8) is changed into 

Op[pOpM(J). M l( j)]  + Oz[pOzM(J). M l ( j ) ]  = 0 

det m(J) = -- j2, MT(j) = M(J) 

where 
(1.12) we can obtain the solution of equation (1.8), 

~(J) = 1/[M(J)]I1 + J. [M(J)]12/[M(J)],l (1.13) 

We consider the following double Lax pair: 

( ~ ) PU~176 
~ + ~, Oo(J) = p2 + ~? Oo(J) 

22 0 ~ PW~176 
c~ p: + 22 ~j Oo(J)-  p: + 22 Oo(J) (1.14) 

00(2 = O; J) = Mo(J) (1.15) 

where 

(1.12) 

T denotes the transposition. From the solution M(J) of equation 

Uo(J) = pc?pMo(J). Mo l(j), Wo(J) = pOzMo(J)" M-l (J)  (1.16) 

and 0 o ( J ) =  00(2, p, z; J) is a double ordinary complex matrix, 2 is a 
double ordinary complex parameter, and the n-soliton solutions are 
obtained as 
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M,,(J) = Idet M'n(J)[- 1/2 M',,(J) 

[M'.(J)]~.b = [Mo(J)]~b-- ~ N~)(J)[r-l(J)]k,Nr #k(J) 
k,l=l 

[V(J)]k, = m~)(J)[ Mo(J) ]~b m~')(Y)/[#k(J) #t( ]) + p2] 

N(k)( J) = m~bk)( J)[ Mo( J) ]ab 

m~k)(J) = m(0k)l-~ol(2 = #k(J); J],~b 

det M',(J) = - j 2 ( _  1)" p2, f i  # ; 2 ( j )  
k = l  

(1.17) 

where m~okb)(J) are double constants (a, b = 1, 2) and 

Op Uk(J) = 2ppk(J)/[P 2 + pz( j ) ]  

bz#k(J) = -- 2P~(J)/[P 2 + #~-(J)] 

pk(J) = #k(P, Z; J) = OCk(J ) -- z + { [ak(] ) -- Z] 2 + p2} 1/2 

(1.18) 

where cr are constants. Let 

~M.(J)  
M" = ( M,,( J) 

when n is even 
(1.19) 

when n is odd 

Then we obtain 

g~n(J) = 1/[-_~f,(J)] H + J" [-h~r,(J)] 12/[mn(J)-]  11 (1.20) 

In the system (1.17), i~o(J ) only enters along the pole's trajectories 
pk(J) (Letelier, 1985). In order to construct the soliton solutions we only 
need ~POk(J) = ~0(2 = #k(J), P, Z; J), (k = 1, 2 , . . . ) ;  the condition (1.15) 
reads 

~9Ok(J)[.k(g) ~ o = Mo(J) (1.21) 

Notice that (Letelier, 1985; Gao and Zhong, 1992) 

(02p + ~  ap + ~3:)In/~k(J) = 0 

0 ~ k ( J )  = 1 ~ z ~ k ( J )  .k~JI ~ o = 0 
2/~k(J) ~k(])~O P' 2Pk(J) 

(1.22) 
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Considering the function q(p, z) which satisfies VZq(p,  z)=O, and the 
operator V ~ = Op + (1/p)~p + ~?z 2, we have 

Yk(J) = f �89 [P/#k(J)]  { [0p/~x(J)" Opq -- Ozl~k(J) . Ozq~] dp 

+ [~za~(J) .  e.~p - ~p~,~(J)- ~z,p] dz} (1.23) 

When/~k --} 0, Yk[~o, #k(J)] = q. 
According to Gao and Zhong (1992), if the solution M o ( J  ) of (1.12) 

satisfies (i) 

Mo(J)  = Mo(q, ,  q2, �9 �9 -, (/ON; J) (1.24a) 

and (ii) 

c~-~ { ~ j  Mo [~p 1, ~o ~ . . . .  ,(pN;J].mol[(pl,(P2 . . . . .  (pN; J ] }  : 0  (1.24b) 

then we can obtain directly a wave function ~o~(J) 

~bOk(J) = Mo{q~, -~ YkE~Pl, #k(J)] " " "~PN --* YkEq~u, /Zk(J)]; J} (1.25) 

where the arrow denotes that ~PN is replaced by Yk(J). In particular, 
when the seed solution M o ( J ) = M o ( c p ; J ) ,  the condition (ii) is satisfied 
automatically. 

2. GENERATING OF NONDIAGONAL SEED SOLUTION AND 
THE NETWORK OF DOUBLE SOLITON SOLUTIONS 

In Section 1 we introduced the two conditions for the seed solutions. 
It is still difficult to find more new seed solutions. In order to solve this 
problem we introduce some nonlinear transformations, by use of which we 
can obtain new seed solutions. We have found that two transformations 
satisfy the requirement, the double Ehlers transformation and the double 7 
transformation (Zhong, 1988a, b). 

Let do(J)= Fo(J ) + J ' ~ o ( J )  be a double solution of equation (1.8); by 
the double 7 transformation 

7'7: d~ ~ do'(J) = F'o(J) + J .  ~'o(J) 

F'o(J) = - j2? - 2 F o ( J ) / [ ~ ( j )  _ JZFo(J) ] (2.1) 

~'o(J) = J27 -  Z~o(J)/[~o2 - j 2 F 2 ( j )  ] 
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For equation (1.12) we have 

T~: Mo(J) ~ M'o(J) 

1 ( 1 f~o(J) "~ 
Mo(J ) = ~ _no(J) n2(J) -- J2Fo(J)J 

1 {72[n2(a)--J2F2(J)] - J 2 n o ( J ) ~  
M'o(J) = F - - ~  \ -- J2~o(J  ) 72 J 

(2.2) 

Clearly the solution M'o(J) of equation (1.12) satisfies equations (1.24a) 
and (1.24b) if Mo(J ) satisfies them; i.e., if Mo(J ) is a seed solution, then 
M'o(J) is also a seed solution. The Ehlers transformation acting on the 
original seed solution Mo(J) yields a different situation, and we will discuss 
this in the following. 

Let g ( J ) =  Fo(J)+ Jno(J)  be an original seed solution, and let the 
Ehlers transformation act on it, 

Te: go(J) ~ g'o(J) = F'o(J) + J~'o(J) 

g(J)  = [a(J)  go(J) + Jb(J)]/[Jc(J) go(J) + d(J)]  

a(J) d(J) - S2b(j) c(J) = 1 

T~: Mo(J ) ~ M'o(J) 

(Ao(J)/A,(j) 
M'o( J) = \ Az( j ) /  A I ( j )  

(2.3) 

A2(J)/AI(J) 
[A2(j)  -- j2A~(J)]/Ao(J) AI( J ) ] J  

where 

F'o(J) = A,(J)/Ao(J) 

fro(J) = A M ) / & ( J )  

Ao(J ) = [d2( j )  + J2c(J) ~o(J ) ]  - j2c(j) Fo(J) 

ml(J  ) = Fo(J ) 

A2(J ) = J2a(J) c(J) ~ ( J )  + [a(J)  d(J) + JZb(J) c(J)]  n o ( J  ) 

- a(J) c(J) F~(J) + b(J) d(J) 

(2.4) 

From (2.3) and (2.4) we know that if Mo(J ) satisfies the condition (1.24a), 
then M'o(J) satisfies it. In the case of Mo(J ) = M0(~p; J), M'o(J) = M~(q~; J) 
satisfies automatically (1.24b), i.e., if Mo(q~;J ) is a seed solution, then 
M6(~o; J) is also a seed solution. 

Since the result of using successively the Ehlers transformation is still 
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an Ehlers transformation, and the result of,using successively a ), transfor- 
mation two times is equal to the identical transformation, we should use 
alternately the Ehlers transformation and  the 7 transformation. The set of 
seed solutions and the network of new soliton solutions are obtained as 
follows: 

113~ ,.. 

Fig. l. 

Notice that the ? transformation and the BZ transformation are commutive 
(Zhong, 1990), but the Ehlers transformation and the BZ transformation 
are not. 

3. NEW DOUBLE GRAVITATIONAL SOLITON SOLUTIONS 
FOR THE ASVF CASE 

For the sake of convenience, we write the seed solution as 

Mo( J) = ( aoC Jt/a l C J) 
\ A2( J)/A I ( J) 

det Mo(J) = - j2, 

A2(J)/AI(J) AI(J)) 
[A~(J) - J2A,~(J)]/Ao(J) 

M~(J) = Mo(J) 
(3.1) 

The corresponding double scattering wave function is 

I//0k = mo{(Pl--+ Yk[(tgl;J]'' "(,ON--+ Yk[(PN;J'];J} (3.2) 

The one-soliton solutions MI(J)  associated with seed solutions are 

1 ([M'1]11 [-Mi]12~ (3.3/ 
M I ( J ) -  [M'1]11 [M'1122-- [M]]~2 [M'1321 [M'112~ [M'~]22J 

902/32/8-10 
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[M](J ) ]  ,a = [Mo(J)] 11 - -  { [~12(J) "~ P21/B}( {kl [Mo(J)] 11 

+ k: [Mo(J ) ] ,2 } [Mo(J) ],1 

+ {k2[Mo(J)] 11 -~- k3 [Mo(J)] 2 ,  } [Mo(J)] 12) 

[M',(J)]  12 = [Mo(J)] 12 -- { [/2~(J) + p2]/B}({k I [Mo(J)] 11 

+ k2[Mo(J)] 21 } [Mo(J)] 12 

+ {k2[Mo(J)] 12 "~- k3[Mo(J)]21 } [Mo(J)] 22) 

[M'1(J)]22 = [Mo(J)]22 - { [#~(J) + P2]/B}({kl[Mo(J)],2 

+ k2[Mo(J)] 22 } [Mo(J) l,2 

+ {k2[Mo(J)1,2 + k3[Mo(J)]22} [Mo(J)] 22) 

[M',(J)]2, = [M'I(J)],2 (3.4) 

kl = [m~l)(J)] 2, k2 = [m~')(J)][m(21)(J)], k3 = [m(2')(J)] = 

B= {k,[Mo(J)],l + 2k2[Mo(J)]~2 +k3[Mo(J)]=:} g2(j) (3.5) 

[ Az(_A3y_kiJ) A l ( Y k ; j ) Y k ;  J)-J2Az(Yk;  J) A2(Yk; J ) ]  m ] ' ) ( J ) = - J  2 rn~ m~ A,(Yk;-- ~ 

[ J) ao(r ; s)] 
m(zl)(j) = _ j2  _mO(~)(j) Yk; J) -I- m ~  A,(yk---~ j (3.6) 

3.1. We take the double Weyl-type solution as the original seed 
solution. After taking the double Ehlers transformation, we obtain the new 
double seed solution 

Mo(J) = (A~176 A2((P)/A'(q)) 
\A2((p)/AI(q~) [A2(~o)-j2A2(q~)]/Ao(~o).A1(@) / 

det Mo(J)  = - j 2  V2q)( f l ,  z )  = 0 

Ao( (p )  = d 2 ( j )  - -  JZc2(J)e2~ 

Al(Cp)  = e e 

A2( q, ) = b( J) d( J) - a(.t) c( J)e 2~ 

a(J) d(J) - J2b(J)  c(J) = 1 

, j ,  _ [ A o ( Y k ) / A l ( r k )  
ok{ 1- ~A2(yk)/a,(yk) 

(3.7) 

A2(Y~)/AI(Yk) 
[A2(Yk) -- j2A2(Yk) ]/Ao(Yk) hi( Y~)J 

(3.8) 
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From (3.3)-(3.5) we know that if we compute m]l)(J) and m(21)(J) we 
obtain the one-soliton solution 

m ] l ) ( J )  = _ J 2 ( L  ~ e 4Y1 q_ L2 e2Yl .4- L 3 ) / ( f i l  e 3Y~ + f l 2e ) " )  

m(21)(J) = --  J 2  e YI(S, e2YI+ S2) 

where 

L1 = p l  O~ - -  q l  Oq O~2, 

L B = p ~ o ~ 2 - q l c ~ 2 f l 2 ,  

~1 = --  a ( J )  c (J ) ,  

f12 ---- d2(J), 

(3.9) 

L 2 = pl(2a,  a2 - j2)  _ q~(al/~2 -[" 0{2/31) 

S I =  -p lOel  q -q l f l l ,  $ 2 =  - p l o ~ 2 + q l f l 2  

o~ e = b ( J )  d (J ) ,  f l l  = - J 2 c 2 ( J )  

P l  = m~oll)(J), q l  = m(ol)(J) 

3.2. Considering the double Weyl-type solution as the original seed 
solution, and by taking the double Ehlers transformation and the double 
7 transformation in turn, we obtain the new double seed solution 

M o ( J  ) = (Ao(go)/al(g~ 
\A2(~P)/A 1 (~P) 

det M o ( Y  ) = - -  d 2 ,  V 2 ( p ( p ,  z )  = 0 

Ao(rp) = v i e  4~~ + v2 ez~p q.- V 3 

a l ( ~ p ) = u l e 3 ~  + u2e  ~ 

A 2 ( ( p )  = w l e  4q~ q- w2 e2r~ q- w 3 

v l  : ~ ,  v 2 = a ~ i ~ 2 - - J  2, 

b/1 = - -  J 2 7 - 2 • l  ' 

w I = j2y20~l  f l l ,  

A2((~o)/A 1 (qo) 

[a~(~)- J2a2(~)]/ao(~) &(~)J 

V 3 = 0~ 2 

U2 = __ j 2 ~ - 2 f 1 2  

w2=J:~ ' :(~IG + a:/~,), 

In this case, m l t ) ( Y )  and m(21)(J) are given by 

m~ll)(j) = _ j z  L~ 1)esr~ + L (21)e6Yl -]- L~ l)e4Y' + L {41)e2rl + L~ 1) 

<2'eTY' + L'22)eS~' + LT)e3YI + < ' e  ~' 

m ( 1 ) ( J )  = S1 e4rl  + $2 e2Y' -I- S 3 

1./1 e3Yl + U2 eYl 

(3.10) 

W 3 = Y2cx2fl 2 

(3.11) 
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L ] l ) = p l w 2 - q l V l W  1 

L(21) =pl(2Wa w 2 -- u~) --  ql(Vl w 2 "b V2W1) 

L~ 1) =pl (2Wi  W3 + W29 -- 2Ul tt2) --  qI(VlW3 "b V2W 2 -{" U3W1) 

L (4 ~) = pl( 2w3w2 - u~) - ql(v2w3 + v3 w2) 

L~ 1) =Pl  w~ - ql v3w2 

L ] 2 ) : V l U l ,  L~2) = Vl u2 --[-/)2 Ux , L~2) : / ) 3 U l ,  L (42) : v3/A'2 

$1 = - p l w l ,  $ 2 =  - p l w 2 + q l v 2 ,  $ 3 : - - p ~ w 3 + q ~ v 3  

Pl  ---- m~ ql  = m~ 

This is the explicit expression for the one-soliton solution associated with 
the seed solution Mo(J). 

3.3. Similarly, considering the solution of the hyperbolic complex 
Ernst equation as the original seed solution, 

M~ ( ~  10) (3.12) 

det Moll = -- 1, VZfp(p, z)  = 0 

and taking the Ehlers transformation on the hyperbolic complex seed 
solution Moll, we obtain the new seed solution 

(Ao(~O)/Al(~o) A~(~)/AI(~o) ) 
ROH ~- k h : ( ( p ) / i l ( ( p )  I-A2((])) --  J 2 i  12((~o)3/io(q) ) h i ( (p )  

det Ro~/= - 1, V2g0(p, z) = 0 (3.13) 

Ao(~O) =/~1~o2 +/~2~o, A~(O)-- ~o, A2(~o) = 01~o2 + 02~ 

f l l = d  2, f l2=2dc,  0 1 = b d  , 0 2 = a d + b c ,  a d - b c =  1 

where a, b, c, and d are real constants. 
In this case, we have m~ 1) and m (1) as 

m] ' ) =  - [L,  Y~H + Lz YiH + L3 Y~.]/[fl~ Y~H + f12 Y i . ]  

m(21) = So + $1 Yl14 

Ll=p~z-z(O~-l)-q~l~fl202, L2=2plHOlO2--q~H(fl~Oz+fl20~) (3.14) 

L3 = plHO~- q lHfl101 

S1 = --PlHOI -[- qlHfll ,  So = --PlH02 -}" qlHfl2 

where Pin  and q~,, are constants. 
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4. DISCUSSION FOR THE CASE OF CSVF 

For the case of a cylindrically symmetric vacuum field (CSVF), the 
line element can be written as 

ds2=g ~[e2a(dp2-dt2)+p2d~2]+g(dz+adq~) 2 (4.1) 

where g, 6, and a are functions of p and t only, and a is determined by g 
and 6; we obtain the double Ernst equation 

Re(~r ~2cg = ~,c,r ~,cg (4.2) 

with the operators ~,2= ~2p + (1 /p)0p-  0 2, V = (0~, i0,), and cg = Cg(p, t ) =  
G(p, t)+ iZ(p, t) is an ordinary complex Ernst potential. A pair of dual 
CSVF solutions are 

The NK transformation is defined as 

T: G +  T(G)=p/G 

V: Z --+ V(Z) = a (4.4) 

= f (p/G2)(O,Z . dp + ?pZ. dt) 

Let 

1 E Gz ) )14 = ~ (lz Z2+ 

We obtain the BZ equation for the case of CSVF (Zhong, 1990) 

a , ( a , M ,  a 4 - ' )  - # , ( p a , M - a l - ' )  = 0 

det _a4= 1, M r  =/14 (4.5) 

From the solution of equation (4.5), we can obtain the solution of equation 
(4.2), 

cg = 1/[_a~r u + i [ /~]  12/[/1~]11 (4.6) 

Similar to the case of ASVF, we can easily write out the set of the new seed 
solutions of equation (4.5) and the network of the corresponding soliton 
solutions. 
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